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River macroplastic flux can inform watershed management of plastic pollution. However, 19 

continuous macroplastic monitoring is not currently possible, so concentrations must be 20 

predicted during unobserved periods. We monitored macroplastic concentration in the 21 

Santa Ana River and attempted to improve our estimation of macroplastic flux using 22 

strategies commonly employed in studying mineral sediment flux. 23 

3. New Hydrological Insights for the Region 24 

Floating macroplastic particle size distributions were statistically equivalent between 25 

lowflow (when only the channel provides macroplastic to the river) and stormflow samples 26 

(when urban runoff also contributes macroplastic to the river) – evidence that channel 27 

processes controlled macroplastic particle size distribution. Concentrations fell during the 28 

falling limb of one hydrograph and rose during the rising limb of another hydrograph. A 29 

generalized additive model (GAM) revealed that macroplastic concentration increased in 30 

response to small increases in discharge but decreased for the largest discharges. The 31 

annual mass flux of floating macroplastic was (27.4, 2.8-84.8 tonnes1yr-1) or (18.2, 2.9-32 

222.2 tonnes1yr-1) as predicted using mean concentration or the GAM, respectively. With 33 

little data, the mean concentration approach may be appropriate but likely underestimates 34 

uncertainty – the reduction of which will require extensive monitoring. 35 
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Graphical Abstract 36 

 37 

Abbreviations 38 

FTIR: Fourier transformed infrared spectroscopy 39 

Pyrolysis GCMS: Pyrolysis gas chromatography mass spectrometry 40 

USGS: United States Geological Survey 41 

ATR: attenuated total reflectance 42 

 43 

Keywords 44 

Plastic Pollution, Concentration-discharge Relationships, Anthropogenic Litter, Transport, 45 

Pathways, Hysteresis 46 

1.0 Introduction 47 

Rivers are highly contaminated by plastic pollution and are the major conveyance of 48 

plastic from land to the ocean (Lebreton et al., 2017). River plastic flux (plastic quantity 49 
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discharged per unit time) is a key variable in interpreting the magnitude of plastic transport 50 

to downriver ecosystems, the pollution at the study location, and changes in the 51 

magnitude of upriver plastic sources (Schmidt et al., 2017; Watkins et al., 2019). 52 

Macroplastic (> 5 mm) particles are known to make up most of the mass of plastic in the 53 

environment and break down to form many more abundant microplastics (particles < 5 54 

mm) (L. Lebreton, B. Slat, F. Ferrari, B. Sainte-Rose, J. Aitken, R. Marthouse, S. Hajbane, 55 

S. Cunsolo, A. Schwarz, A. Levivier, K. Noble, P. Debeljak, H. Maral, R. Schoeneich-56 

Argent, R. Brambini & J. Reisser, 2018; Moore et al., 2011). Rigorous estimates of river 57 

macroplastic flux are critical for addressing the global crisis of plastic pollution (Bai et al., 58 

2021) but has been much less studied than microplastic flux (van Emmerik, 2021). 59 

 60 

River macroplastic flux is typically quantified by multiplying river discharge (m3s-1) by 61 

macroplastic concentrations (count or mass1m-3). Continuous river stage (m) 62 

measurements are available in many locations within the United States and are 63 

periodically calibrated to discharge (m3s-1), velocity (m1s-1), depth (m), and other river flow 64 

characteristics by the United States Geological Survey (USGS). However, no methods to 65 

continuously monitor river macroplastic concentration are currently in use. One needs to 66 

make predictions about unobserved macroplastic concentrations to quantify macroplastic 67 

flux. 68 

 69 

Mineral sediment transport has a long history of research and can inform strategies for 70 

studying plastic transport (Waldschläger et al., 2022). Unobserved concentrations of 71 

fluvial particulate matter are often predicted using discharge regime, hydrograph 72 
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hysteresis, and rating curves fit to river discharge (Gray, 2018; Rose et al., 2018; Walling, 73 

1977). Changes in discharge reflect combined changes in the supply and transport of 74 

water to the monitoring stations and affect changes in the river's transport properties (e.g., 75 

turbulence, velocity, depth). The ratio between the flux of water and the flux of particulates 76 

at any moment is reflected in the average concentration of the particulate in the flow. 77 

Multiple orders of magnitude of variability around the concentration-discharge rating 78 

curves are typical, particularly in the small mountainous rivers characteristic of coastal 79 

California (Gray, 2018). This variability is due in part to stochastic processes like storm 80 

sequence (East et al., 2018), spatio-temporal characteristics (Aguilera and Melack, 2018), 81 

and antecedent watershed conditions (Fisher et al., 2021; Gray et al., 2015; Warrick and 82 

Rubin, 2007), which can cause changes in the processes controlling water and sediment 83 

delivery and routing (Gray et al., 2014). Temporal structure to this variability can manifest 84 

in concentration-discharge relationships from hydrograph hysteresis (Williams and 85 

Others, 1989)(i.e., different rising vs falling limb concentration-discharge relationships) to 86 

interdecadal scale trends (Gray, 2018; Warrick et al., 2013). A "first flush" event is 87 

common for sediment, whereby high concentrations are flushed during the first large 88 

storm event of the year (Sansalone John J. and Cristina Chad M., 2004). The particle size 89 

distribution of the suspended load may shift with hydrologic mode (stormflow, lowflow) 90 

and can be diagnostic of sources and transport pathways of mineral sediment (Li Yingxia 91 

et al., 2005; Slattery and Burt, 1997). Investigation of temporal patterns in concentration-92 

discharge relationships can provide insight into transport and supply processes and be 93 

used to refine flux estimation (Farnsworth and Milliman, 2003; Gray et al., 2014; Warrick 94 

and Rubin, 2007). We build from these foundations of fluvial sediment concentration-95 
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discharge relationships to advance the fundamentals of macroplastic concentration-96 

discharge relationships. 97 

 98 

Early research on plastic pollution suggested that macroplastic concentration-discharge 99 

relationships should be considered in estimating plastic discharge from rivers. River 100 

macroplastic particle count to mass ratios were assumed constant in literature (Van 101 

Emmerik et al., 2019) despite changes in hydrological mode, suggesting stable particle 102 

size distributions but changes in macroplastic particle size distributions have not been 103 

tested. Our first aim was to test the hypothesis that macroplastic particle size distributions 104 

were stable regardless of hydrologic mode. Stormflow events have been observed to 105 

increase macroplastic concentration compared to lowflow (van Emmerik et al., 2019) but 106 

macroplastic concentration discharge hysteresis has not been tested in the literature. Our 107 

second objective was to test whether hysteresis or storm timing may play a role in these 108 

event to seasonal scale concentration-discharge relationships. Rating curves have been 109 

observed between plastic concentration and discharge as decreasing (van Emmerik et 110 

al., 2018; Watkins et al., 2019), increasing (Moore et al., 2011), stable (Wagner et al., 111 

2019), and nonmonotonic (Haberstroh et al., 2021), reflecting a similar diversity of rating 112 

curves that can be watershed or even event specific as seen in other particulate transport 113 

studies. This underscores the need for more regional studies on plastic concentration 114 

discharge rating curves and resultant flux estimation. Our third goal was to assess the 115 

macroplastic concentration-discharge rating relationship in the Santa Ana River, and 116 

evaluate its use to estimate the annual flux of macroplastic at our study location during 117 

the study year. In total, these objectives serve to inform science about transport 118 
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processes of macroplastic in rivers and inform society about how to best manage 119 

macroplastic pollution. 120 

2.0 Study Location 121 

The Santa Ana River drains a small mountainous watershed (total area: 6900 km2, area 122 

at survey location: 2341 km2) and experiences a hot dry summer Mediterranean climate 123 

regime, with > 90% of its 61 cm of average annual precipitation occurring between 124 

October-April (Figure 1). The study location on the Santa Ana River was monitored where 125 

the river crosses the Van Buren Bridge in Riverside, CA, which is 1.8 km downriver from 126 

USGS gage 11066460. The bridge above the stream was used during stormflow sampling 127 

and sampling was conducted in the stream during lowflow. The main stem of the Santa 128 

Ana River in the vicinity of sample collection displays two major hydrologic regimes: low 129 

magnitude (mean daily discharge (USGS codes: par 60, stat 00003) = 1.8 m3 s-1) flows 130 

supported entirely by wastewater discharge, and flashy storm flows (mean daily 131 

discharge: 14.0 m3 s-1; and 2 year recurrence interval daily flow of 64.3 m3 s-1) (Figure 132 

S1). For most of the time, the middle reach of the Santa Ana is a losing river with 133 

discharge decreasing downriver unless fed by a stormflow event or at wastewater input 134 

points. Naturally the study location would have no or little flow without wastewater input 135 

for most of the year. Wastewater systems are separated from stormwater in the 136 

watershed, so the wastewater treatment plant does not treat stormwater. The sampled 137 

reach is low gradient (slope = 0.004), sandy fine gravel bedded, and includes a vegetated 138 

riparian corridor that persists between flood control levees. These characteristics are 139 

typical of interior trunk streams in Southern California and thus the study location is a 140 

suitable representative of streams draining highly urbanized watersheds in this region. 141 
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142 

Figure 1: The study (A), watershed (B), and survey location (C) of this study. The white 143 

dot is the location where the samples were taken. (A) shows the watershed location in 144 

the United States. In (B) the basemap is the ESRI Dark Basemap where urban areas and 145 

roads are in lighter gray and darker areas are natural lands. Stream centerlines are added 146 

from the National Hydrography Dataset in blue (USGS, 2019). The Watershed boundary 147 

was delineated using Streamstats from the USGS (USGS, 2016a). The National Inventory 148 

of Dam (“National Inventory of Dams,” 2018) locations were plotted as pink dots. (C) 149 

Satellite imagery of the study reach is shown from Google Earth, and the survey location 150 

is downstream of the Van Buren Bridge in Riverside, CA. 151 

 152 

Pathways and fate of macroplastic at the study reach depend on water and trash 153 

management within the watershed and channel. A large amount of accumulated trash 154 

exists as standing stock within the channel riparian area (Moore et al., 2016), but there 155 
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have not been previous studies on trash flux through the Santa Ana River. Potential 156 

sources of macroplastic to the channel are suspected to be runoff from upstream urban 157 

areas, direct dumping within the river, and unmanaged waste from populations of 158 

unhoused people that live within the riparian area (Cowger et al., 2019; Moore et al., 159 

2016). Urban runoff is mitigated through street sweeping and trash capture devices in 160 

storm drains (Cowger et al., 2022; Riverside City, 2021; Riverside County, 2010). 161 

However, to our knowledge, there are no systematic mitigation measures for removing 162 

trash within the channel. The watershed upriver of the sample location includes 31% 163 

developed land use. Immediately adjacent and upriver of the sample location is the major 164 

metropolitan area of the Inland Empire, including Riverside and San Bernardino cities. 165 

Wastewater facilities that input to the Santa Ana have secondary or tertiary treatment 166 

before the wastewater is transferred to the channel. They are suspected to be a negligible 167 

source of macroplastic due to the filtration used during the treatment processes. Near the 168 

watershed's headwaters are mountains with primarily rural populations, but these 169 

sections are generally disconnected from the sampling reach due to dams at the foothills 170 

of many mountain tributaries and the losing nature of the river channel most of the year. 171 

Downriver of the study location is the Prado Dam, which likely prevents most trash flux 172 

from the study reach from reaching the ocean due to cleanup activities at the dam.   173 

3.0 Methods 174 

Methodological descriptions were written to ensure reproducibility and interpretability of 175 

the study methodology following best practices for microplastics research, recognizing 176 

that there were no current recommendations for macroplastic (Cowger et al., 2020). 177 



10 
 

3.1 Field Measurements 178 

3.1.1 Macroplastic measurements 179 

River macroplastic samples were collected in the Santa Ana River from the downriver 180 

side of the Van Buren bridge in Riverside, California (Figure 2, 3, & 4). A steel box trawl 181 

(designed by Dr. Marcus Eriksen of 5 Gyres) with a square 0.16 m2 intake and 5 mm 182 

polyester rope net was lowered from a bridge to the thalweg of the river using a portable 183 

crane (USGS Type A Crane with 3 Wheel Truck) attached to the trawl with rope and a 184 

boat shackle. As the thalweg moved locations, we followed it with the sampler. On 185 

average, half of the net was submerged if the net was not resting on the river bed. To 186 

sample lowflows, we waded into the river and set the net in the thalweg of the channel on 187 

the river bed. The total number of samples collected was limited to 20 over the course of 188 

5 sampling events (Figure 4) due to the highly episodic and fast-moving river flow in 189 

Southern California. Our goal was to sample multiple time points during all 2018 water 190 

year (October 1st 2018 - September 30th 2019) stormflow events and during three lowflow 191 

events. However, stormflow in Southern California is highly episodic, making it 192 

challenging to collect stormwater samples since three field technicians were required to 193 

be available during a 24 hour window of potential operations with only 1-2 day notice. 194 

Additionally, Southern California stormflow can be fast-moving (> 3 m/s), forcing sampling 195 

to stop when conditions become too dangerous due to large objects (e.g., trees, 196 

dumpsters, tires, beds) flowing down the river or the sampling equipment violently 197 

jumping out of the water. Because of these issues, we could only sample during 2 of 5 198 

stormflows in water year 2018. 199 

 200 
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 201 

 202 

Figure 2: Sample collection net with a yard stick (0.91 m) for scale. A) Top view of the 203 

net. B) front view into the intake of the net. The net has a 400 mm square aperture and a 204 

5 mm mesh. C) side view of the net.  205 

 206 

Figure 3: A) net deployment from inside a channel, B) net deployment from a bridge, C) 207 

an example of a sample that will be visually sorted for macroplastic. 208 
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 209 

 210 

Figure 4: The hydrograph (mean daily average cubic meters per second) from October 211 

1st 2018 to October 30th 2019. Y axis (discharge and daily precipitation) is in log 10 scale 212 

while x axis is in days with quarterly tickmarks. Red stars mark the days when samples 213 

were acquired. Hyetograph in blue (daily precipitation in mm) is overlayed but uses the 214 

same values as discharge.  215 

 216 

3.1.2 Hydrologic Measurements 217 

All river hydrologic data were obtained from the USGS river gage 11066460 located 1.8 218 

km upriver from the macroplastic sampling location (USGS, 2016b). The river gage was 219 

inspected. Flow conditions and morphological characteristics were similar to the survey 220 

location. Continuous stage data (15 min) (gage height) (USGS parameter 65) were 221 

acquired along with measurements of channel discharge (USGS parameter 61), river 222 

velocity (USGS parameter 55), channel cross-sectional area (USGS parameter 82632), 223 

and channel width (USGS parameter 4) from 2018-01-10 to 2020-04-21. The channel 224 
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cross-section shape was generally rectangular at both the survey and gage locations. 225 

The river cross-sectional area was divided by width to estimate the average river depth. 226 

USGS measurements were used to create rating curves using linear regression on log10 227 

transformed stage and measured variables. Log10 transformation bias (log10 correction) 228 

was corrected using the approach of Ferguson (Ferguson, 1986). The adjusted r squared 229 

(adjRSQ) value was derived for each regression in R to describe the amount of variability 230 

around the regression. The discharge rating curve was (log10(discharge) = 5.1 * 231 

log10(gage height) – 1.49, adjRSQ = 0.76, log10 correction = 1.09, p value = 10-16). The 232 

velocity rating curve was (log10(velocity) = 1.24 * log10(gage height) – 0.58, adjRSQ = 233 

0.44, log10 correction = 1.02,  p value = 10-9). The depth rating curve was (log10(depth) = 234 

2.67 * log10(gage height) – 2.03, adjRSQ = 0.73, log10 correction = 1.03, p value = 10-16). 235 

Uncertainty in USGS rating curves was propagated using bootstrap simulation 236 

(resampling with replacement, n = 10,000) of the USGS measurements. River slope was 237 

estimated using the 1/9th arc-second digital elevation model from the National Elevation 238 

Dataset (USGS, 2017) and Google Earth. River shear velocity (u*) was estimated as:  239 

𝑢∗  =  √𝑔ℎ𝑠                                                  equation 1 240 

where (h) is the average river depth, (g) is the acceleration due to gravity, and (s) is the 241 

river slope (de Leeuw et al., 2020). Daily precipitation (Figure 4) was downloaded from 242 

Midwestern Regional Climate Center's cli-MATE application (Midwestern Regional 243 

Climate Center, 2021) for the KRAL airport weather station near the sample location 244 

(Figure 1). 245 

3.2 Plastic particle characterization 246 
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Macroplastic particles were visually sorted from the samples and photographed with a 247 

scale in the image (Figure 5A). We used Image J (Schindelin et al., 2012) to quantify 248 

particle projected area (Figure 5B) for each particle using Image J's color thresholding, 249 

manual tracing, and particle size analysis routines (Figures 5A & 5B). Particle projected 250 

area is the area of the image which contains the particle. Particle projected area contains 251 

no information about the third dimension (the height) of the particles. We did not account 252 

for the third dimension of the particles in this analysis instead we standardized the 253 

smallest dimension to be out of view by laying the largest dimensions facing upward to 254 

the camera view, and in our opinion, the advantages of the high throughput reproducible 255 

approach outweighed the loss of measuring the third dimension. Small artifact “particles” 256 

visible at the fringes of particles (Figure 5B) were removed by restricting the minimum 257 

particle size to 1 mm2. Nominal particle size was estimated as the square root of the 258 

particle projected area. Particles are well separated by this technique and outlined 259 

precisely. Suspected error in particle size measurement using this technique is less than 260 

1 mm. 261 

 262 
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Figure 5: (A) Plastic particles extracted from samples in the Santa Ana River. (B) An 263 

outline image showing the traced projected surface area of each plastic particle. Scale in 264 

(B) is for both images as they have the same exact scale. 265 

 266 

All suspected plastic particles were subjected to a sink-swim test by placing them in fresh 267 

water from the lab de-ionized water faucet, agitating the particle until no surface bubbles 268 

were visible, and assessing if the particle floated or sank. All particles were labeled as 269 

settling or buoyant. 270 

 271 

A subset of 88 out of 944 particle identities were validated using fourier-transformed 272 

infrared (FTIR) spectroscopy and 30 particles with pyrolysis gas chromatography mass 273 

spectrometry (PY-GCMS). The smallest particles of the samples were chosen for 274 

validation because they were the most likely to be misidentified (Kroon et al., 2018). For 275 

FTIR, a Thermo Nicolet 6700 attenuated total reflectance (ATR) FTIR was used at 4/cm 276 

spectral resolution with daily background recording for the spectral range from 400-4000 277 

wavenumbers (1/cm). Spectral analysis was done in Open Specy (Cowger et al., 2021b) 278 

with smoothing conducted with a Savitzky-Golay filter with a window size of 12 points and 279 

a 3rd order polynomial, baseline correction conducted with the imodpolyfit routine using 280 

an 8th order polynomial, and a min-max normalization before identification. Identification 281 

was conducted using Pearson correlation and a 0.5 uncertainty threshold using the entire 282 

spectral range. In Pyrolysis GCMS, the plastic sample was pyrolyzed in a quartz tube at 283 

a temperature of 750 C by using the CDS-2000 Pyroprobe. The Agilent 6890N GC used 284 

a  CDS-1500 Valved GC Interface held at 320 C and the hydrogen gas flow rate was 1.2 285 
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ml min-1 in constant flow mode. The column characteristics were DB-5 (0.25 mm OD x 60 286 

m L; 0.25 µ film thickness) fused-silica capillary column. The CDS-1500 GC Interface 287 

valve was closed after one min. The column oven temperature was initially held at 45°C 288 

for 2 min and then ramped to 320°C at 20°C min-1 rate. The column oven was held at 289 

320°C for 19 min resulting in a total run time of 34.75 min. The MS electron Multiplier 290 

(EM) auto-tune voltage was adjusted by 200V above the auto-tune voltage. Data 291 

acquisition was performed in full-scan mode from 29-600 amu by using the Agilent 292 

ChemStation Software. The Injector and the Mass Spectrometer Transfer Line Heater 293 

were maintained at 320°C. The mass spectrometer Quadruple and Source temperatures 294 

were held at 150°C and 230°C.  295 

 296 

Results from spectral analysis demonstrated highly accurate visual differentiation of 297 

plastic from the samples. Pyrolysis GCMS identified 28 of the 30 particles as plastic, 1 298 

particle as non-plastic, and 1 particle as unknown. FTIR identified 67 as plastic and 3 299 

particles as non-plastics, with 18 that could not be identified. Pyrolysis GCMS utilized a 300 

two-tier approach comprising of peak fingerprinting and mass spectra of marker peaks. 301 

The two-tier confirmation approach provided increased confidence in the quality of the 302 

polymer identification data. Pyrolysis GCMS was used to further validate our FTIR 303 

analysis by comparing 8 particles with both techniques resulting in 6 particles had the 304 

same identity with both techniques, 1 particle being identified as a different polymer 305 

(polyethylene instead of polypropylene), and 1 particle not being able to be identified by 306 

either Pyrolysis or FTIR (SI). 307 

 308 
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Thirteen macroplastic particles from these samples with rising velocities (positively 309 

buoyant) were randomly chosen to measure rising velocities and reported on in another 310 

publication (Waldschläger et al., 2020). They were composed of expanded polystyrene, 311 

polyethylene, and polypropylene, and had powers roundness ranges from 2.2-5.9, Corey 312 

shape factor from 0.07-0.88, dimensionless diameter of 2.5-30.81, and rising velocities 313 

ranging from 0.221-1.69 m/s. 314 

 315 

3.3 Estimating macroplastic concentrations and uncertainties 316 

Three types of macroplastic concentrations (count1, projected area1, or mass1 meter-3) 317 

were estimated along with their uncertainties. All three calculations required an estimate 318 

of sample water volume. Submerged net depth was set to 0.2 m (half of the net height) 319 

or the average river depth, whichever was smaller. We multiplied the depth of the 320 

submerged net by the width of the net (0.4 m) to get the submerged cross-section of the 321 

net. Uncertainty of submerged depth was incorporated by simulation for each sample 322 

using a uniform probability density function from 0.1 – 0.3 m. The average river velocity 323 

from the USGS rating curve (linear model on log10 transformed data with log10 bias 324 

correction) was multiplied by the submerged cross-sectional area and the sample 325 

duration to quantify the sample's water volume. River velocity rating curve uncertainties 326 

were incorporated into sample size uncertainty using bootstrap simulation of the model fit 327 

(resampling with replacement, n = 10,000). 328 

 329 

We removed a subset of macroplastic particles from our observations that would have 330 

biased our results: settling particles and particles < 5 mm. Microplastic particles can be 331 
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transported in surface load, wash load, bed load, and rising or settling suspended load 332 

(Cowger et al., 2021a). Surface sampling (conducted in this study) best measures surface 333 

load because bed load and settling suspended load particles will preferentially pass 334 

beneath the sampler uncollected. Therefore, we limited this study to particles with a high 335 

likelihood of being in surface load transport (positively buoyant particles). We compared 336 

the freshwater settling plastics with the positively buoyant particles by size and count for 337 

all samples (Figure 6). We found that positively buoyant plastics were the most common 338 

plastic-type in the samples (98 %). The spectral analysis also corroborated that the vast 339 

majority of plastic materials were polyethylene, polypropylene, and polystyrene 340 

(expanded foam), which are more likely to float in water (Muthuvairavasamy, 2022). We 341 

removed the 17 settling particles from further analysis. We also noticed that the particle 342 

size distribution decreased in abundance around 5 mm in size, which corresponded to 343 

the net's mesh size. All particles smaller than 5 mm were removed from further analysis. 344 

We permuted all estimated shear velocities and all observed rising velocities of the 345 

particles to derive Rouse numbers.  346 

𝑃 =  
𝑤𝑠

𝛽𝑘𝑢∗
                                                  equation 2 347 

The Rouse number (P) is derived by dividing the particle settling velocity ws by the 348 

multiple of β a parameter that adjusts the assumption of parabolic eddy diffusivity (set to 349 

1), k the von Karmen constant (set to 0.4), and u* the shear velocity. The largest mean 350 

Rouse number was -2.5, suggesting that most particles observed were in surface load 351 

transport (Cowger et al., 2021a). Therefore, we assumed that all particles in this study 352 

were transported at the surface of the water column. We used the depth-integrated 353 
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average concentration estimate introduced by (Lebreton et al., 2017) and (Cowger et al., 354 

2021a) to have a small bias for surface sampling particles in surface transport.  355 

356 

Figure 6: A) Nominal particle size distributions (the square root of the projected surface 357 

area) for settling and rising particles in this study. Violin plots are centered with notched 358 

box plots within (95% confidence interval). Violin plots are a smoothed and symetric 359 

representation of the probability density function of the particle size distributions. Dots 360 

show points beyond 1.5 times the interquartile range. Particle abundances dropped off 361 

for particles smaller than 5 mm in nominal particle size (the size of the mesh on the net). 362 

B) Pie chart showing the number of particles found with settling velocities (yellow) and 363 

rising velocities (purple). There were many more particles with rising velocities (931) than 364 

with settling velocities (17). 365 

 366 
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Count, area, and mass concentrations were calculated by dividing the abundance by 367 

sample volume. Count concentration was calculated by counting the number of particles 368 

in the sample (after removing bias-causing particles described in 3.2) and dividing it by 369 

the total sample water volume. Count uncertainty (due to fragmentation from handling, 370 

missing particles, and inadequate sampling of particle counts) estimated as up to ±10% 371 

of the sample count and was propagated using a uniform probability density function from 372 

0 – 10%. Area concentration (mm2m-3) was calculated by summing the projected surface 373 

area from all particles in the samples and dividing it by the sample volume. Area 374 

uncertainty was estimated in the same way as count uncertainty. We measured the mass 375 

of 124 of the suspected macroplastic particles imaged for particle size measurement. We 376 

derived a linear regression on log10 transformed data between the particle projected area 377 

and the mass of the particle (log10(particle mass (g)) = 1.13 * log10(particle area (mm2) – 378 

4, adjRSQ = 0.63, log10 correction = 1.36, p value < 10-16) (Figure 7) and corrected for 379 

log10 transformation bias (Ferguson, 1986). Then we used the regression to estimate the 380 

mass of all particles from our samples. Mass concentrations (g1m-3) were computed by 381 

dividing the total mass of macroplastic by the sample volume. Mass uncertainty was 382 

computed in the same way as area and count uncertainties. 383 
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 384 

Figure 7: Each black dot is a particle with a particle mass (g) (y axis) and projected area 385 

(mm2) (x axis). Axes are log10 transformed. The blue line represents the linear fit on log10 386 

transformed data. The gray area is the 95% confidence interval around the central 387 

tendancy of the fit.  The regression equation, adjusted r squared, log 10 correction value, 388 

and p value are printed in the top lefthand corner of the plot.  389 

 390 
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3.4 Lowflow and stormflow particle size distribution 391 

Stormflow samples were visually separated from lowflow samples by using the 392 

hydrograph's slope change inflection points. All particles from stormflow and lowflow 393 

samples were pooled to make two particle size distributions (empirical cumulative density 394 

function). We used the two-sample Kolmogorov-Smirnov test to assess the null 395 

hypothesis that the particle size distributions of stormflow and lowflow were from the same 396 

distribution.  397 

 398 

3.5 Hydrograph hysteresis and storm timing 399 

We tested for hydrograph hysteresis and storm timing effects on the macroplastic 400 

concentration-discharge relationship. To assess hysteresis, we connected the sample 401 

concentration-discharge values for each sampling day with a line, and drew an arrow 402 

indicating the relationship's direction through time. We assessed the relationship between 403 

the hydrograph domain (rising limb, falling limb) during each stormflow sampling event 404 

and the hysteresis. Stormflow periods were determined using the description in 3.5. The 405 

rising limb was separated from the falling limb by assessing whether the discharge 406 

increased (rising limb) or decreased (falling limb) at the sample time. Storm timing was 407 

assessed by plotting the 2018 water year discharge time series (October 1st 2018 - 408 

September 30th 2019) plus the month of October 2019 to include the final sample in the 409 

study. We described the likely relationships between the timing and magnitude of the 410 

stormflows and the concentration-discharge relationships observed. Since only two 411 

stormflow events were sampled, we did not compute statistics on these trends and used 412 

them as a heuristic tool to identify future areas of study. 413 
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 414 

3.6 Macroplastic concentration-discharge rating curve 415 

We assessed the concentration-discharge rating curve for count and mass concentrations 416 

using generalized additive modeling with a smoothing spline. This model allows the 417 

variety of concentration-discharge rating curves (non-monotonic and monotonic) to be fit 418 

(Gray, 2018). We tested the assumption of normality for log10 transformed concentrations 419 

using the Shapiro-Wilk test, and decided that we would use the assumption of normality 420 

for the model (count concentration, W = 0.92, p value = 0.08 | mass concentration, W = 421 

0.97, p value = 0.82). We fit the generalized additive model to log10 transformed 422 

macroplastic concentrations and discharge using a smoothing spline (k=7). We assessed 423 

our confidence in the model fit using the p-value (alpha = 0.05), and deviance explained. 424 

 425 

3.7 Estimating annual mass flux 426 

We tested two commonly employed techniques, mean concentration extrapolation and 427 

the concentration-discharge rating curve, for estimating the mass flux of macroplastic in 428 

water year 2018 at the site to assess the importance of uncertainties and concentration-429 

discharge rating curves (Gray, 2018). The continuous discharge of the water year 2018 430 

was estimated from the continuous stage using a rating curve (section 3.1.2). Using mean 431 

concentration extrapolation, we estimated mass flux by assuming steady mean 432 

concentration using the mean mass concentration observed from our dataset. Total 433 

discharge for the water year 2018 was multiplied by the mean mass concentration to 434 

predict the annual flux. Using the generalized additive model rating curve, we predicted 435 

concentration for every discharge on record (15 min interval discharge). Mass flux was 436 
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computed for every 15 min discharge interval and summed for the entire year. For both 437 

methods, confidence intervals were derived using 10,000 simulations with bootstrapped 438 

datasets for all data and models (resampling with replacement). 439 

3.7 Statistical Analysis 440 

All statistical tests and plots were written in reproducible R code, starting from raw data 441 

and ending with the outputs. The packages dataRetrieval (De Cicco et al., 2021), dplyr 442 

(Wickham et al., 2020), ggplot2 (Wickham, 2016), mgcv (Wood, 2011), readxl (Wickham 443 

and Bryan, 2019), data.table (Dowle and Srinivasan, 2020), stringr (Wickham, 2019), 444 

viridis (Garnier, 2018), tidyr (Wickham and Henry, 2020), MASS (Venables and Ripley, 445 

2002), and matrixStats (Bengtsson, 2021) were used in the code. 446 

4.0 Results and discussion 447 

4.1 Lowflow and stormflow particle size distribution 448 

We tested for differences in the macroplastic particle size distributions during lowflow and 449 

stormflow. Smaller size classes were exponentially more abundant than larger sizes for 450 

both hydrologic regimes (Figure 8). A similar particle size distribution has been observed 451 

for microplastic particles (Kooi and Koelmans, 2019). The maximum distance between 452 

the two cumulative distribution functions was 0.080 (p-value = 0.66). The particle size 453 

distributions of macroplastic particles in stormflow and lowflow samples were statistically 454 

indistinguishable. There was also high goodness of fit (adjRSQ = 0.63) between particle 455 

mass and particle projected area observed in our study (Figure 7). (van Emmerik et al., 456 

2018) assumed a constant count- mass ratio for macroplastic floating in rivers, which 457 

would be suspected if the particle size distribution were also stable there. Assuming this 458 
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stability continues in the future and is widespread, mean count-mass-area conversion 459 

ratios (common conversions in the field) should be constant regardless of discharge at a 460 

given site. Future work should compare our particle size distribution to distributions 461 

elsewhere to look for spatial variability. 462 

 463 

Figure 8: Empirical cumulative distribution functions for the nominal particle size (square 464 

root of particle projected surface area) of particles collected during stormflow and lowflow 465 

periods. Particlen refers to the total number of particles sampled during the respective 466 

transport mode. Samplen refers to the number of independent samples aggregated. 467 

 468 
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What can the observed uniform particle size distributions of macroplastic particles in 469 

riverflow tell us about watershed macroplastic pollution pathways and transport 470 

processes? The particle size distribution of macroplastics in riverflow is an expression of 471 

the macroplastic source's particle size distribution and the intervening channel's 472 

hydrologic transport characteristics. Large, positively buoyant particles only need a 473 

minimum water depth of ~ 25-50 % of their particle size to become mobilized (Braudrick 474 

and Grant, 2000). From a transportability perspective, it is unsurprising that we did not 475 

see a particle size preference because the river has an average depth of 0.16 m during 476 

lowflow conditions, which could mobilize the largest particle (0.4 m) that can fit in the 477 

opening of the net. From a source fingerprint perspective, the water at the site is nearly 478 

100 % wastewater effluent during lowflow conditions. Macroplastic during these lowflow 479 

conditions can only be sourced from the channel. A predominant control of macroplastic 480 

particle size distributions during stormflow may occur in the river channel, or the particle 481 

size distribution of macroplastic outside the channel is the same as inside the channel. 482 

Future inquiry into particle size distributions of surface transportable macroplastic 483 

particles in the channel bed, riparian area, and watershed would help us better 484 

understand differences in the particle size distributions between regions. Other 485 

quantifiable macroplastic fingerprints like probability density functions of shapes, colors, 486 

and polymer type may also assist pathway description in future studies. 487 

 488 

4.2 Hydrograph hysteresis and storm timing 489 

We assessed the impact of hysteresis and storm timing on macroplastic concentration. 490 

Count concentrations ranged from 0.034 – 24 num1m-3 and had a median concentration 491 
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of 0.25 num1m-3 and a mean of 1.89 num1m-3. Mass concentrations ranged from 0.00047 492 

– 2.99 g1m-3 and had a mean concentration of 0.22 g1m-3 and a median of 0.016 g1m-3. 493 

Macroplastic concentrations rose during the rising limb of one hydrograph (2019-2-2) and 494 

fell during the falling limb of another hydrograph (2019-1-17) (Figure 9). The same 495 

phenomenon was observed for mass concentrations (Figure 10). Assuming that 496 

macroplastic has stable hysteretic patterns, clockwise hysteresis would be the most likely 497 

explanation for this limited dataset, commonly also found for natural mineral sediment 498 

(Rose et al., 2018). Another macroplastic hydrograph sampling event in Northern 499 

California also observed clockwise hysteresis with macroplastic (5 Gyres and EOA inc., 500 

2016) with the largest macroplastic concentration transporting during the very beginning 501 

of the stormflow. (Stenstrom and Kayhanian, 2005) also found that greater than 50% of 502 

litter flushes from roadsides in Southern California during the first 2 hr of stormflow. 503 

Clockwise hysteresis can be described from source mobilization and transport processes. 504 

We expect that floating macroplastic were always supply-limited since discharge 505 

conditions were always more than sufficient to effect transport, which could cause floating 506 

macroplastic supply to be rapidly depleted over the course of a stormflow. Another 507 

explanation can be provided by the transport rate of the floating macroplastic (which travel 508 

quickly at the river surface velocity) compared to the velocity of the peak of the discharge 509 

(which is much slower) (McDonnell and Beven, 2014), therefore one would expect the 510 

peak in macroplastic concentration to arrive before the discharge peak. Although 511 

hysteretic behavior can be stable at stream reaches (which would allow us to compare 512 

rising and falling limbs of different hydrographs), it has proven to be unstable for sediment 513 
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in the Santa Ana river (Warrick and Rubin, 2007). A follow-up study is needed to collect 514 

data throughout a complete hydrograph on both sides of the peak discharge. 515 

516 

Figure 9: Concentration-discharge hysteresis for each sampling event. (A) Uncertainties 517 

from bootstrapped simulations are expressed as lines around the data points. Sampling 518 

events are uniquely colored, and hysteretic behavior is annotated using arrows to 519 

demonstrate the direction of the line during the sampling event. Dates are indicated 520 

nearest to each sampling event. The two storm hydrographs (B & C) are presented 521 

colored the same as the sampling event they are related to.  Red dots are used to indicate 522 

the time and discharge when a sample was taken.  523 
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 524 

Figure 10: Mass concentration hysteresis analysis. (A) lines around the points indicate 525 

bootstrapped uncertainties. Each sampling day has its of color and a line connects the 526 

samples by time of sampling. An arrow indicates the direction the concentration line is 527 

going through time. (B) Hydrograph during February 2nd event with sample times plotted 528 

as red dots on the hydrograph. (C) Hydrograph during January 17th event with sample 529 

times plotted as red dots on the hydrograph. 530 

 531 

A "first flush" event is common for many pollutants in Southern California, whereby high 532 

sediment concentrations are flushed during the first large storm event of the year. We 533 

found that an earlier storm event (1/17/2019) did not have higher concentrations than the 534 

later storm (2/2/2019). It is possible that we missed the first flush event since two 535 

stormflow events occurred before 1/17/2019 (Figure 4). It is also possible that the first 536 

flush event coincided with the 2/2/2019 event that we sampled. First flush events require 537 

a minimum storm magnitude threshold before they initiate (Kim et al., 2004). Future 538 

inquiry into first flush events for macroplastic should attempt to survey the first few hours 539 



30 
 

of each stormflow of the year to standardize effects from hysteresis and better assess the 540 

role of storm timing (5 Gyres and EOA inc., 2016). 541 

 542 

4.3 Macroplastic concentration-discharge rating curve 543 

Our results show a statistically significant (p value < 0.05) rating curve between discharge 544 

and concentration (log10(count concentration) = s(log10(discharge)) – 0.47, log10 545 

correction = 1.19, DE = 67 %, n = 20, p value = 0.0002) (Figure 11). The same 546 

phenomenon was observed for mass concentrations (Figure 12). The rating curve was 547 

nonmonotonic, with the highest macroplastic concentration in the center of the observed 548 

discharges and the lowest concentrations at the highest and lowest discharges. As 549 

discharge increased, it could tap into additional sources of macroplastic at a rate of supply 550 

higher than that of water. However, water increased more rapidly than plastic at the 551 

highest discharges, resulting in lower concentrations. In the Santa Ana River, the flow 552 

covers a larger region of the channel corridor between levees during higher flows and can 553 

access all available macroplastics on the channel bed surface. Increases in discharge 554 

thereafter increase the flow depth in the channel, but do not access additional channel 555 

bed surface storage, which would result in a decrease in concentration if channel surface 556 

storage is an input location of buoyant plastic pollution in the sampled flows. The only 557 

other study of macroplastic concentration discharge relationships in Southern California 558 

(Moore et al., 2011) found generally higher concentrations by mass and count during wet 559 

weather flows but did not relate that to discharge magnitudes. 560 

 561 
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Interestingly, the concentration ranges observed for surface floating macroplastic in the 562 

Los Angeles river in 2004 by (Moore et al., 2011) (0 - 81 g1m-3, 0 – 18 num1m-3) overlaps 563 

with the concentration ranges observed in this study. A recent study also observed a 564 

similar nonmonotonic trend with increases at small increases in discharge and decreases 565 

in concentrations at the highest discharges (Haberstroh et al., 2021). However, 566 

concentration-discharge rating curves with a positive slope (5 Gyres and EOA inc., 2016), 567 

negative slope (van Emmerik et al., 2018), and no trend (Wagner et al., 2019) have been 568 

observed in other regions. At this time, we do not know what the primary driving force of 569 

variability is in concentration-discharge rating curves between watersheds. 570 
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 571 

Figure 11: The generalized additive model on log10 transformed count concentration and 572 

discharge. In the top left corner, we provide the equation coefficients, number of 573 

observations, deviance explained, and p-value. Uncertainties for each data point’s 574 

concentration and discharge values were bootstrapped and are provided as lines around 575 

each point. 576 
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 577 

Figure 12: Generalized additive model using discharge to predict mass concentration. 578 

Deviance explained, sample size, and p-value for the smooth term are given. 579 

Uncertainties were bootstrapped around each observation and uncertainty range in 580 

discharge and concentration is given for each observation.  581 

 582 
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4.4 Estimating annual macroplastic flux 583 

We used two flux estimation strategies to assess the impact of accounting for the 584 

concentration-discharge rating curves described in 3.3. The annual flux estimate based 585 

solely on mean concentration was 27 (2.82-84.8) metric tonnes and the concentration-586 

discharge rating curve estimate (Figure 12) was 18.2 (2.9-222.2) metric tonnes (Figure 587 

13). There is considerable overlap in the confidence intervals between the estimates. 588 

There was more uncertainty resulting from the concentration-discharge model fit because 589 

we introduced the uncertainty of the generalized additive model into the estimate. This 590 

underscores the importance of robust uncertainty assessment in flux estimation 591 

strategies, which can change the interpretation of the suitability differences between 592 

models. At this time, we would recommend using the mean concentration to estimate flux 593 

since it is a simpler model, but it likely underestimates uncertainty because systematic 594 

dependence on discharge and time is not included. More data is required to assess the 595 

differences between these estimates. 596 

 597 

Future work should pursue the processes behind our preliminary findings of hydrograph 598 

hysteresis and nonmonotonic concentration-discharge relationships to decrease the 599 

uncertainty in those relationships for the Santa Ana River. The particle mass conversion 600 

from particle projected area could be improved by including morphological characteristics 601 

in the model or estimating particle density and the third dimension. Figure S2 shows 602 

particle size-to-mass relationships split up by particle morphologies. Some of the 603 

variability in the trend appears to be due to these morphological characteristics which 604 

likely correlate to both the third dimension and particle density. Studies investigating 605 
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fluxes elsewhere should assess whether similar relationships exist and account for them 606 

in their flux estimates accordingly.  607 

 608 

Figure 13: Total annual flux estimates (point) and uncertainties (whiskers) for estimating 609 

macroplastic flux using the Generalized Additive Model (18.2 (2.9-222.2) metric tonnes) 610 

(Figure 12) or the mean observed concentration (27 (2.82-84.8) metric tonnes). 611 

5.0 Conclusions 612 

This study was based on limited data (20 data points at one site) and should be 613 

considered as initial evidence toward a process-based understanding of macroplastic fate 614 

and transport processes in urban Southern California watersheds. Lowflow and stormflow 615 
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samples had the same particle size distribution, suggesting that the channel is a critical 616 

location where particle size distributions are propagated or that the particle size 617 

distribution outside of the channel is the same as in the channel. Higher macroplastic 618 

concentrations were observed during the rising limb of a storm and lower concentrations 619 

observed during a near-peak falling limb, suggesting macroplastic source depletion early 620 

in storms or rapid mobility of macroplastic. However, future studies should measure 621 

macroplastic concentrations over the full range of a single hydrograph to avoid assuming 622 

that hysteresis is a stable process. Macroplastic concentrations were nonmonotonically 623 

related to discharge in terms of mass concentration and count concentration. Water year 624 

macroplastic flux estimates made using mean concentration and the concentration-625 

discharge rating curve were not statistically distinguishable. Mean concentration may be 626 

appropriate to estimate flux when data availability is very low, but future studies should 627 

follow up on the findings revealed here to decrease uncertainty and further investigate 628 

the dependence of macroplastic concentration discharge relationships on time at the 629 

event to seasonal scale. A deeper analysis of sources and transport processes outside 630 

of the channel in the watershed would greatly advance our current understanding of how 631 

macroplastic is transported in this system. These phenomena may be particularly 632 

important in small, mountainous semi-arid systems such as the Santa Ana River where 633 

in-channel storage of macroplastics may be particularly high, and the readily mobilized 634 

by flashy stormflow regimes. 635 
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